Berkovich log discrepancies in positive characteristic
نویسندگان
چکیده
منابع مشابه
On the Log Discrepancies in Mori Contractions
It was conjectured by McKernan and Shokurov that for all Mori contractions from X to Y of given dimensions, for any positive ε there is a positive δ such that if X is ε-log terminal, then Y is δ-log terminal. We prove this conjecture in the toric case and discuss the dependence of δ on ε, which seems mysterious.
متن کاملIn Positive Characteristic
We establish Noether’s inequality for surfaces of general type in positive characteristic. Then we extend Enriques’ and Horikawa’s classification of surfaces on the Noether line, the so-called Horikawa surfaces. We construct examples for all possible numerical invariants and in arbitrary characteristic, where we need foliations and deformation techniques to handle characteristic 2. Finally, we ...
متن کاملTranscendence in Positive Characteristic
1. Table of symbols 2 2. Transcendence for Drinfeld modules 2 2.1. Wade’s results 2 2.2. Drinfeld modules 3 2.3. The Weierstraß-Drinfeld correspondence 3 2.4. Carlitz 5 2.5. Yu’s work 6 3. t-Modules 7 3.1. Definitions 7 3.2. Yu’s sub-t-module theorem 8 3.3. Yu’s version of Baker’s theorem 8 3.4. Proof of Baker-Yu 8 3.5. Quasi-periodic functions 9 3.6. Derivatives and linear independence 12 3.7....
متن کاملNilpotent Orbits in Positive Characteristic
Let G be a connected reductive linear algebraic group defined over an algebraically closed field of characteristic p. Assume that p is good for G. In this note we classify all the spherical nilpotent G-orbits in the Lie algebra of G. The classification is the same as in the characteristic zero case obtained by D.I. Panyushev in 1994, [32]: for e a nilpotent element in the Lie algebra of G, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure and Applied Mathematics Quarterly
سال: 2020
ISSN: 1558-8599,1558-8602
DOI: 10.4310/pamq.2020.v16.n5.a5